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Gradient-index electron optics in graphene p-n junctions
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We investigate the electron transport in smooth graphene p-n junctions, generated by gradually varying
electrostatic potentials. The numerically calculated coherent current flow patterns can be understood largely
in terms of semiclassical trajectories, equivalent to the ones obtained for light beams in a medium with a
gradually changing refractive index. In smooth junctions, energetically forbidden regions emerge, which increase
reflections and can generate pronounced interference patterns, for example, whispering gallery modes. The
investigated devices do not only demonstrate the feasibility of the gradient-index electron optics in graphene
p-n junctions, such as Luneburg and Maxwell lenses, but may have also technological applications, for example,
as electron beam splitters, focusers, and waveguides. The semiclassical trajectories offer an efficient tool to
estimate the current flow paths in such nanoelectronic devices.
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I. INTRODUCTION

The ballistic, beamlike propagation of electrons in
graphene enables the observation of optical-like phenomena
in this material. This electron optics has recently come into
focus of research with several theoretical and experimental
contributions [1–16]. For example, it has been shown that
an electron beam, which hits the interface of a graphene p-n
junction, behaves like a light beam at the interface of two ma-
terials with different refractive indices. Hence, the reflection
and refraction of the electrons follows a generalized version
of Snell’s law, where the refractive indices are determined by
the electrostatic potential in the p and n regions of the junction
[1,6,9,10,17–19]. Due to the special dispersion relation of
graphene, negative reflection can be observed, a property that
has been seen before only in the light propagation in metama-
terials [20–22]. Moreover, Klein tunneling—the absence of
backscattering at normal incidence—is observed, which can
be attributed to the pseudospin conservation of the electrons
in graphene. It has also been shown that an electron beam in
graphene can be deflected by means of elastic deformations
that induce a strong pseudomagnetic field [23–28].

The possibility to manipulate electron beams in graphene
by means of p-n junctions or elastic deformations has lead
to various proposals for nanoelectronic devices, such as
Veselago lenses [4,6,29–35], electron fiber optics [3,36],
interferometers [37,38], valley beam splitters [7,26,39–50],
collimators [51,52], switches [53], reflectors [54,55], transis-
tors [2,56,57], and Dirac fermions microscopes [58]. Electron
optics has been extended recently from graphene to other
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materials, such as phosphorene, where negative reflection has
been predicted [59,60], noncoplanar refraction and Veselago
lenses in Weyl semimetals [61–64], anomalous caustics in
borophene p-n junctions [65], and superdiverging lenses in
Dirac materials [30].

Most of the work on electron optics in graphene p-n
junctions involves interfaces where the electrostatic po-
tential (and hence the refractive index) changes abruptly
[8,29,35,66–68]. Recent experiments have demonstrated that
such abrupt junctions can indeed be realized [13]. P-n junc-
tions with a smoothly changing electrostatic potential are
often regarded as disadvantageous, because they induce an
energetically forbidden region and hence reduce the transmis-
sion. Nevertheless, one can also take advantage of the reduced
transmission to construct quantum dots based on smooth cir-
cular p-n junctions. These junctions show interesting physical
properties like Mie scattering [29] and whispering gallery
modes [69]. They have been realized recently in experiments
[4,70].

A smoothly changing electrostatic potential can be under-
stood as a smoothly changing refractive index that establishes
gradient-index optics. In this paper, we investigate to which
extent graphene p-n junctions show gradient-index optics
phenomena. We will study straight p-n junctions as well
as circular junctions which have received little attention so
far. On the one hand side, we will calculate numerically the
current flow in these systems, applying the nonequilibrium
Green’s function method to the tight-binding model. On the
other hand side, using the geometric optics approximation, we
will determine the semiclassical trajectories of the electron
beams. Comparing both approaches, we will show that they
agree in a wide regime of parameters. Nevertheless, discrep-
ancies emerge which can be explained by the interference
of electron waves. These wave effects increase for smooth
circular junctions as they can partially confine the electron
beam.
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FIG. 1. Straight (a) and circular (b) graphene p-n junctions.
The bluish color shading shows the electrostatic potential within
the graphene ribbon. Both junctions have a smooth interface that
separates the two regions of different doping. The profile of the
electrostatic potential is indicated by the solid black lines, which
shifts locally the conical energy bands of graphene. This causes that
the electrons at energy E (black dashed lines) go from the conduction
band (orange cone) to the valence band (light blue cone).

II. SYSTEM AND METHODS

A. Graphene p-n junctions

We model the electronic structure of graphene by the tight-
binding Hamiltonian

H = −t
∑
i, j

|iA〉 〈 jB| + H.c., (1)

which describes well the electron transport at low energies.
The |iA/B〉 indicate the atomic states localized on the carbon
atoms at positions ri on the sublattices A and B, respectively.
The sum runs over nearest neighboring atoms, which are
separated by a distance of a = 0.142 nm and coupled with the
energy t = 2.8 eV. A plane-wave ansatz leads at low energies
to the continuous Dirac Hamiltonian

H±
Di(k) = h̄vF σ± · k, (2)

at the two Dirac points K± = (0,±4π/(3
√

3a)) at the edges
of the Brillouin zone. The wave vector k is measured with
respect to these Dirac points. We define h̄vF = 3at/2 and
σ− = σ∗

+ = (σ1, σ2). The valley degree of freedom of the
electrons in graphene, which may be used for a new kind of
electronics called valleytronics [41,43–48], will not be rele-
vant in the present work, because the considered p-n junctions
do not affect it. The Dirac Hamiltonian leads to the well-
known conical energy bands of graphene

E (k) = sh̄vF |k|, (3)

where s = sgn(E ) = ±1 is the band index.
A graphene p-n junction is constituted by regions of dif-

ferent doping; see Fig. 1. Such regions can be generated by
metallic gates that induce an electrostatic potential, V (r), in
the continuous space representation or V = ∑

i Vi |i〉 〈i| in the
tight-binding approach. This potential shifts the energy bands
of graphene and hence generates a junction. A p-n junction is
generated if the electrons go from one band to another through
interband tunneling, while in a p-p′ or n-n′ junction intraband
tunneling takes place within the valence or conduction band,

respectively. In the following, we will concentrate on straight
p-n junctions [Fig. 1(a)], generated by the electrostatic poten-
tial

Vlin(r) =
⎧⎨
⎩

0 if x � −w/2(
x
w

+ 1
2

)
V if |x| < w/2

V if x � w/2
(4)

and circular junction [Fig. 1(b)] with the potential

Vcir(r) = V

1 + (r/r0)α
. (5)

The smoothness1 of the p-n junctions is controlled by the
parameters w and α. Note that circular p-n junctions can
be also understood as p-n-p junctions. Such p-n junctions,
straight and circular ones, have been realized experimentally;
see, for example, Refs. [1,4,10,13,69–71].

B. Semiclassical trajectories

Within semiclassical theory, the propagation of the elec-
tron wave functions is approximated by the propagation of
point particles. In order to apply this approximation to the
quantum system described by the Dirac Hamiltonian, Eq. (2),
we use the eikonal approximation and the methods developed
in Ref. [26] to obtain relativistic trajectories (geodesics) for
massless particles coupled to the electric potential V (r)

d p
dt

≡ d

dt

(
[E − V (r)]

v2
F

dr
dt

)
= −∇V (r), (6)

where the momentum vector p(t ) along the trajectory r(t )
satisfies the dispersion relation [E − V (r)]2 = v2

F p2. This ap-
proach is discussed in detail in our previous works and applied
successfully to understand the current flow paths in elastically
deformed graphene [26,39].

In order to get additional insight, the dynamics can be
reformulated by means of the classical pseudorelativistic
Hamiltonian

Hsc = s(r) vF |p| + V (r), (7)

where s(r) = sgn(E − V (r)) is the band index and |p| =√
p2

x + p2
y =

√
p2

r + p2
θ /r2 is the momentum in Cartesian and

polar coordinates, respectively. The trajectories of the ballistic
electrons described by this Hamiltonian can be related to
optical rays in an artificial medium with the refractive index

n(r) ≡ E − V (r)

vF
. (8)

Taking into account that the electrostatic potential V (r) can
change smoothly (on the length scale defined by the Fermi
wavelength of the electrons), we obtain in this way a gradient-
index medium.

1Note that mathematical smoothness is not relevant here.
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FIG. 2. Refractive index n in a straight (a) and circular
(b) graphene p-n junction as a function of the position x [compare
Fig. 1] and the electron energy E . Reddish colors indicate n > 0,
while bluish colors represent n < 0. Note that for certain electron
energies (dashed horizontal line) n changes its sign in the narrow
white region.

The equations of motion in a straight junction are given by

dx

dt
= ∂px H = s(x) vF px√

p2
x + p2

y

= vF px

n(x)
,

dy

dt
= ∂py H = s(x) vF py√

p2
x + p2

y

= vF py

n(x)
. (9)

Eliminating the time dependency by dividing both expres-
sions, we obtain for the semiclassical trajectories

y(x) = y0 + py

∫ x

x0

s(x′) dx′√
n2(x′) − p2

y

, (10)

where r0 = (x0, y0) is the initial position of the electron. A
similar analysis for the electron trajectories in circular junc-
tions leads to

θ = θ0 + l
∫ r

r0

s(r′) dr′

r′√r′2n2(r′) − l2
, (11)

where l ≡ pθ is the angular momentum. Note that the mo-
mentum component py is conserved in straight junctions due
to the translational symmetry along the y axis [see Fig. 1(a)],
while the angular momentum ≡ pθ is conserved in circular
junctions due to the rotational symmetry [see Fig. 1(b)].

These electron trajectories are identical to the ones ob-
tained for light beams in gradient-index optics [72], apart from
an important difference: The refractive index n(r) depends on
the electron energy and changes its sign when the electrons go
from the conduction (n region) to the valence band (p region);
see Fig. 2. It is all negative for p-p′ and positive for n-n′
junctions. Moreover, the square root in the denominator of
Eqs. (10) and (11) can become imaginary in certain regions of
the system, which are defined by the inequalities |n(x)| � |py|
and |n(r)| � |l|/r for straight and circular junctions, respec-
tively. These forbidden regions are indicated in Fig. 3 by those
ranges where the refractive index (bluish-reddish curve) lies
in the gray-shaded regions. While classically those regions

FIG. 3. The reddish-bluish curve gives the refractive index n at
constant electron energy, see the dashed horizontal curves in Fig. 2.
The black curves represent the momentum component py and l in
straight (a) and circular (b) junctions, respectively. When n is in the
gray shaded regions, the root in Eqs. (10) and (11) is imaginary and
the electrons have to tunnel through a forbidden region.

cannot be penetrated, quantum mechanically the electrons can
tunnel through the forbidden regions.

As tunneling is largely suppressed in smooth junctions,
the boundary of the forbidden region defines the reflection
zone for the beam. Figure 3 explains that the transmission
decreases if the incidence of the electrons becomes more
oblique, because py (or l) increases and, thereby, the size
of the forbidden region increases, too. In the same way, the
transmission is perfect for normal incidence, because py = 0
(or l = 0) and the forbidden region disappears, which matches
with the pseudospin conservation. The semiclassical trajecto-
ries obtained from the geometrical optics are equivalent to the
relativistic geodesics in the classical region (n > 0), but offer
additional techniques to deal with nonclassical phenomena
like tunneling through classically forbidden regions. Note also
that the refractive index in Fig. 2(b) is astonishingly similar to
a measurement of the local resistance in Ref. [4].

C. The nonequilibrium Green’s function method
for the current flow

The current flow in the graphene p-n junction is calculated
by means of the nonequilibrium Green’s function (NEGF)
method. This quantum method is based on the tight-binding
Hamiltonian, Eq. (1). It does not rely on the approximations
made in the previous section to obtain the semiclassical trajec-
tories and thus allows us to verify their validity. As the NEGF
method is discussed in detail in various textbooks [see, e.g.,
Refs. [73,74]], we summarize here only briefly the essential
formulas.

The Green’s function of the system is given by

G(E ) = (E − H − V − �)−1, (12)

where E is the energy of the injected electrons, H is the
tight-binding Hamiltonian, Eq. (1), and V is the electrostatic
potential. In order to suppress boundary effects and mimic an
infinite system, we place a constant complex potential � =
−i

∑
j∈edges | j〉 〈 j| at the edges of the system, which should

absorb the electrons.
The electrons are injected at the left edge of the sys-

tem as plane waves propagating toward the interface of the
p-n junction. Their momentum is determined by the electron
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energy, Eq. (3), and the angle of injection θ = arctan ky/kx.
This injection is represented by the in-scattering function

�in =
∑

i, j∈edge

A(ri )A(r j )ψ
∗
j (k)ψi(k) |i〉 〈 j| , (13)

where the sum runs over all carbon atoms at the left system
edge; see Fig. 1. The ψi(k) are the eigenstates of the Dirac
Hamiltonian, Eq. (2),

ψ j (k)=
{

c−ei(k+K− )r j + c+ei(k+K+ )r j j ∈ A,

s c−ei(k+K− )r j+iφ − s c+ei(k+K+ )r j−iφ j ∈ B,
(14)

where φ = arg(ikx + ky). The parameters c± control the occu-
pation of the two K± valleys. We consider the case in which
both valleys are fully mixed, i.e., c± = ±1/2. The function

A(r) = e−(y−y0 )2/d2
0 (15)

gives the injected current beam a Gaussian profile. The pa-
rameters y0 and d0 control the position and width of the beam.
We will see later that this model allows us to inject ballistic
electron beams in graphene.

Finally, the current flowing between the atoms at positions
ri and r j is calculated by

Ii j = Im(t G �in G†)i j . (16)

This bond current is averaged (or coarse-grained) over the
six edges of the carbon hexagons. This current vector field
is visualized in the following [see, for example, Fig. 4(a)]
by means of yellow arrows. Its norm, the current density, is
represented by the red color shading.

Good agreement between the quantum current flow and the
semiclassical trajectories of geometric optics can be expected
only in the specific parameter regime, where the Fermi wave-
length of the electrons λF is much larger than the interatomic
distance a but smaller than the system size (Lx, Ly). Moreover,
smooth changes of the electrostatic potential, as sketched in
Fig. 1, can be resolved only if the Fermi wavelength is shorter
than the spatial variations of the potential �x/yV . These con-
ditions can be summarized in the inequality

a 	 λF = 2π

|k| < �x/yV 	 Lx/y. (17)

However, when the electrostatic potential changes smoothly,
the effective electron energy E − V , and hence the Fermi
wavelength, will change, which may lead to a local violation
of the inequality.

III. RESULTS

A. Straight graphene p-n junctions

We begin our discussion by analyzing the current flow in
a homogeneous graphene nanoribbon with a size of about
150 × 150 nm or larger.2 In Fig. 4(a), electrons are injected
according to Eq. (13) at the left ribbon edge with energy E =
0.15t ≈ 420 meV (corresponding to the Fermi wavelength
λF ≈ 9 nm) and a momentum vector parallel to the horizontal

2The accuracy of the used approximations increases with the sys-
tem size.

FIG. 4. Current flow in a graphene nanoribbon in the absence
(a) and presence [(b)–(d)] of an electrostatic potential which changes
abruptly at the dashed line and hence generates a p-n junction.
The current density is indicated by the red color shading and the
current vector field by yellow arrows. The diverging electron beam
in panel (a) is refocused by the p-n junction in (b). The semiclassical
trajectories from Eq. (10) [see the solid black, blue, and green lines]
agree with the current flow patterns calculated by means of the NEGF
method. At the interface of the p-n junction, the electron beam is split
into a reflected and transmitted electron beam, in agreement with the
generalized Snell’s law, Eq. (18).

x axis. A beamlike propagation of the electrons with some
divergence due to diffraction is observed, which will enable
us to compare the numerically calculated current flow patterns
with the semiclassical trajectories.

In Fig. 4(b), a straight p-n junction is introduced by an
electrostatic potential which changes abruptly from zero to
the constant value V = 2E at the dashed line. We observe
negative refraction at the interface of the p-n junction, which
refocuses the electron beam. Moreover, Klein tunneling, i.e.,
the absence of back-scattering at normal incidence, occurs.
When the junction is tilted,3 the electrons do not hit the
interface orthogonally and the incident electron beam is split
into a reflected and refracted beam. The solid black, blue, and
green lines in Fig. 4 are the predicted semiclassical trajectories
[Eq. (10)] for the incident, transmitted, and reflected electron
beams, respectively. They follow a generalized Snell’s law,

θre = −θin and
sin(θin)

sin(θtr )
= ntr

nin
= E − V

E
, (18)

3Note that due to the isotropy of graphene’s electronic structure
at low energies, tilting the junction is equivalent to injecting the
electrons under a different angle.
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FIG. 5. Current flow close to the interface of the graphene
p-n junction. (a) Enlargement of the interface region of Fig. 4(c).
(b) Probability density generated by the superposition of the in-
coming and reflected electron beam, |eikin·r + eikre·r|2. The good
agreement in panels (a) and (b) shows that the interference between
the two electron beams generates the ripple pattern.

where θin/tr/re are the angles of incidence, transmission, and
refraction, while nin/tr as defined in Eq. (8) take the roles of
the refractive indices in the n and p regions, respectively.
In general, these trajectories agree very well with the nu-
merical quantum calculations; see Figs. 4(b)–4(d). Electron
optics in such straight p-n junctions has been studied largely
before [1,2,6–11,14–16,18,19,53,56,58,66,71,75]. Here, we
have confirmed the generalized Snell’s law by means of
numerical quantum calculations of the current flow. Addition-
ally, we observe in Figs. 4(c) and 4(d) a ripple pattern close
to the interface of the p-n junction, magnified in Fig. 5(a).
In Fig. 5(b), we show the superposition of the incoming and
reflected electron wave, |eikin·r + eikre·r|2. The agreement of
both figures confirms that the ripples are an interference effect
of the electron wave functions, which goes beyond semiclas-
sical trajectories. Similar ripple patterns can also be observed
close to the edges of the graphene nanoribbon. They can be
explained in the same way by the reflections at the system
boundary. The absorption of the electrons at the edges by
the complex potential is not perfect and hence generates a
small reflected part which interferes with the incoming beam.
We can also observe in Fig. 5(a) that the current changes its
direction not instantaneously at the interface of the junction
but in a finite region due to the finite width of the incident
electron beam. This effect is not covered by the semiclassical
trajectories, which have zero width.

We continue our discussion with smooth graphene p-n
junctions, where the electrostatic potential changes linearly
over a width of w = 350a ≈ 50 nm ≈ 5λF ; see Fig. 1(a).
As shown in Fig. 6, the semiclassical trajectories agree well
with the current density obtained by means of the NEGF
method. The generalized Snell’s law remains valid for such
smooth junctions. However, in comparison with the case of an
abruptly changing potential [see Fig. 4], a much larger part of
the incident current is reflected. This effect can be observed
even for normal incidence, where Klein tunneling takes place
due to the diffraction of the electron beam which slightly
changes the propagation direction. The effect gets even more
pronounced for narrower electron beams for which the diffrac-
tion is stronger; compare Figs. 6(a) and 6(b). Such p-n junc-
tions can be used to generate narrow parallel electron beams.

FIG. 6. Current flow in a straight graphene p-n junction with a
smoothly changing profile (w ≈ 50 nm). The width of the junction is
indicated by dashed black lines [see Fig. 1(a)]. The points where the
electrons go from the conduction to the valence band are indicated
by a gray dashed line. The semiclassical trajectories (solid lines)
agree well with the NEGF current density (red color shading). The
forbidden region is indicated by the gray shaded region. At the edge
of this region, the current density accumulates and the semiclassical
trajectories return. Note that the forbidden zone in the case of normal
incidence [(a), (b)] appears due to the diffraction of the electron
beam, which has been determined on the basis of Fig. 4(a).

The increasing reflection can be understood by the rise of
the forbidden zone [see Fig. 3(a)], which is indicated in Fig. 6
by the gray shaded regions. Moreover, an accumulation of
the current density can be observed just at the edge of the
forbidden zone, which coincides with the point of return of
the semiclassical trajectories. Note that we have also sketched
trajectories in the forbidden regions by using the substitu-
tion k → ik, which converts evanescent waves to propagating
ones. Although the Fermi wavelength diverges in this region
and the geometric approximation might break down the con-
tinuation of the trajectories to another classical region agrees
again very well with the quantum current.

Until now, we have discussed only the case of p-n junc-
tions, where interband tunneling occurs. In the case of n-n′
and p-p′ junctions, the electrons remain in the same band and
the current flow patterns change qualitatively. In Fig. 7, a nar-
row (and hence strongly diverging) electron beam is injected
at the left ribbon edge. In contrast to the p-n junction [see
Fig. 6(b)], the current is largely transmitted through the inter-
face of the junction. Moreover, in the n-n′ junction [Fig. 7(a)],
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FIG. 7. Electron optics in a smooth n-n′ (a) and p-p′ (b) junc-
tions. The electrons are injected as a very narrow beam with strong
diffraction. The current is transmitted largely through the junction in
contrast to the p-n junction, where the electrons are transmitted only
at normal incidence [compare Fig. 6(b)].

the divergence of the electron beam is enhanced, whereas
in the p-p′ junction [Fig. 7(b)], it is reduced similarly to a
converging lens. Note that in n-n′ junctions a critical angle
exists, beyond which total reflection occurs; see the outermost
trajectories in Fig. 7(a).

B. Circular graphene p-n junctions

Let us consider now the circular graphene p-n junctions.
As in the case of straight junctions, we begin with an
abruptly changing electrostatic potential, obtained by α → ∞
in Eq. (5). In Fig. 8, it can be observed that a part of the current
density is deflected around the p-n junction, while the part
that enters the junction is focused onto a single point [5]. The
semiclassical trajectories show a caustic inside the junction,
in agreement with the focusing point observed in the current
density. However, outside the junction both approaches are
much less in line. This disagreement can be explained by the

FIG. 8. Current flow in a circular graphene p-n junction. The
electrostatic potential is changing abruptly at the dashed circle from
zero to V = 2E . A single focusing point emerges inside the junction,
whose interface is denoted by the dashed circle. Outside the junction,
the electrons are scattered divergently. The semiclassical trajectories
agree well with the current flow inside the junction, but not that well
outside due to interference of the incoming and reflected electron
waves in a wide region.

FIG. 9. Interference of an incoming plane wave [with Gaus-
sian profile; see Eq. (15)] and a reflected circular electron beam,
|A(r)eikin·r + eikrer/r|2 shows that the current pattern outside the junc-
tion is changed strongly by interference.

wave nature of the electrons, which leads in straight junctions
to a ripple pattern at the interface of the junction due to the in-
terference between the incoming and reflected electron waves.
In circular junctions, the reflected electron wave is (approxi-
mately) circular and hence interferes with the incident wave in
a much larger region. The resulting interference pattern shown
in Fig. 9 agrees qualitatively with the observed current pattern
and demonstrates the limitations of the geometric optics in
circular p-n junctions. Additionally, we note in Fig. 8 that
when the radius of the junction is reduced, the incidence of
lateral electrons becomes more grazing and a larger part of
the electrons is deflected around the junction.

By smoothing the profile of the electrostatic potential (α =
2), we obtain a circular junction with a gradually changing
refractive index, which is certainly the most appealing device
for gradient-index electron optics. Such a device has been
realized recently experimentally [4,70]. Current flow patterns
are shown in Fig. 10 together with semiclassical trajecto-
ries, which agree roughly with the quantum current. The
disagreement can be explained by strong interference due to
an energetically forbidden region through which the electrons
have to tunnel. Therefore, a large fraction of the incident
electron beam is reflected, which causes a ripple pattern that
is much more pronounced than in abrupt circular junctions;
see Fig. 8. Similar to smooth straight junctions [see Fig. 6],
an accumulation of the current density can be observed at the
edges the forbidden region, which is indicated in the semi-
classical trajectories by a color change from black to green.
The size of the forbidden region is minimal for the electrons
of normal incidence [see Fig. 3] and hence, those electrons
enter and leave the junction preferentially. Those electrons
that enter the junction are strongly confined by the Lorentz
potential, leading to various interference patterns. Moreover,
for some parameters [see Fig. 11], we can observe extremely
pronounced interference patterns inside the junction, such as
whispering gallery modes [36,69,76]. These modes are an
interference phenomenon of the electron waves confined in
a potential well. It is interesting to see that such modes can
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FIG. 10. Gradient-index electron optics in smooth circular p-n
junctions (α = 2). The dashed circle indicates the isoline V (r) = E .
The current flow pattern and the semiclassical trajectories agree
roughly. The differences can be explained by the existence of an
energetically forbidden region, which enhances reflections outside
the junction as well as the confinement inside the junction and hence
leads to pronounced interference patterns. The interface of the for-
bidden region is indicated by the point where the trajectories change
their color from black to green. The inset shows an enlargement close
to the center of the p-n junction.

be induced by an external electron beam. These devices might
find use as sensors of external electric or magnetic fields [77].

In Fig. 12, we study the transition from smooth to abrupt
circular p-n junctions by increasing the parameter α in Eq. (5).
When the junction profile becomes more abrupt, the current
density is dispersed more strongly and the focusing point
of the current moves away from the center of the junction
[see Fig. 10(b)] toward the left edge of the junction [see
Fig. 8(b)]. Moreover, interference patterns are observed inside
the junction, which depend sensitively on the smoothness of
the junction.

FIG. 11. Gradient-index electron optics in smooth circular p-n
junctions. Strong interference patterns in the form of whispering
gallery modes can be observed for specific parameters.

When studying smooth circular n-n′ and p-p′ junctions [see
Fig. 13], we observe that the current flow patterns change
qualitatively and more drastically in comparison with straight
junctions [see Fig. 7]. In the n-n′ regime, the Lorentz poten-
tial acts as a beam splitter, which separates even electrons

FIG. 12. Current flow in circular p-n junctions. When the param-
eter α is increased, the junction changes more abruptly. The current
density is dispersed more strongly and the focusing point moves
from the center of the junction [see Fig. 10(b)] toward the left [see
Fig. 8(b)]. Moreover, distinct interference patterns can be observed
inside the junction.
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FIG. 13. Current flow in smooth circular n-n′ (a) and p-p′

(b) junctions. The former represent efficient electron beam splitters,
while the latter act as a converging lens.

with small angular momentum. The semiclassical trajectories
indicate that the Klein tunneling persists for zero angular
momentum (normal incidence). Once more, the trajectories
from Eq. (11) and numerical calculations of the current den-
sity show a remarkable agreement. Furthermore, a circular
p-p′ junction behaves like a converging lens; see Fig. 13(b).
The electron current flow is focused on a single point behind
the junction. In contrast with the p-n regime, interference
patterns decrease, and therefore, p-p′ and n-n′ junctions are
an ideal scenario to realize gradient-index electron optics.
It is important to note that the refractive index defined by
Eq. (8) is fully positive in the n-n′ regime, while it is all
negative in the p-p′ regime. Moreover, we have demonstrated
that the gradient-index electron optics is in line with the
principles of light optics even for negative refraction, because
“the rays bend towards the region of higher refractive index”
[p. 132, 72]. Figure 14 shows the advantages of the opti-
cal methods used here over the relativistic geodesics. Apart
from the classical regions where both approaches perfectly
agree, we also see the tunneling through a forbidden region,
corresponding to tracing the evanescent waves, and further
propagation in a second classical region. In this way, we

FIG. 14. Current flow in a smooth circular p-n junction. Semi-
classical trajectories [see Eq. (11)] are shown by solid black curves,
while the geodesics are given by the dashed orange curves. Both
approaches are equivalent for the reflected electrons. However,
geodesics cannot be used to estimate the paths of the electrons that
are transmitted through the junction.

FIG. 15. Current flow in graphene with an electrostatic potential
that generates a Luneburg lens (a) and a Maxwell’s fish-eye lens (b).

obtain a much more complete picture and better agreement
with the wave dynamics.

As a proof of principle, we also apply the devel-
oped techniques to the well-known Luneburg and Maxwell
gradient-index lenses. The standard Luneburg lens [78] is
known for its perfect focusing of parallel beams coming from
any direction and is described by

n(r) = n0

{√
2 − (r/r0)2 for r < r0

1 otherwise.
(19)

In our situation, related to graphene, the interesting param-
eter is the potential V (r) which follows from Eq. (8) and
n0 = E/vF . The Maxwell’s fish-eye lens [79] has all pairs of
focusing points on a circle and is generated by the refractive
index

n(r) = n0

1 + (r/r0)2 , (20)

which is closely related to the previously used potential in
Eq. (5). The functionality of these electron optical devices in
graphene is demonstrated in Fig. 15. In the Luneburg lens [see
Fig. 15(a)], the incoming parallel electron beam is focused
onto a single point. In Maxwell’s fish-eye lens [see Fig. 15(b)],
a strongly diverging point source of electrons, injected at the
left edge of the system, is refocused at the right edge. Both
lenses can be used to control the current flow in graphene.

IV. CONCLUSIONS

In this paper, we investigated the ballistic current flow
in smooth graphene p-n junctions. Comparing numerically
calculated current densities with semiclassical trajectories, we
demonstrated that the current flow in these devices can be
understood largely in terms of gradient-index optics.

In straight p-n junctions, we confirmed the validity of a
generalized Snell’s law and reported additionally interference
effects between the incident and reflected electron waves; see
Figs. 4–6. Forbidden regions emerge in smooth junctions; see
Fig. 3. The current is reflected at the interface of these re-
gions, except for the normally incident electrons due to Klein
tunneling. Such smooth p-n junctions can be used to generate
narrow parallel electron beams.

In circular p-n junctions with an abruptly changing pro-
file, the part of the current density that enters the junction is
focused onto a single point, which agrees with a caustic of
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the semiclassical trajectories; see Fig. 8. When the profile of
the junction is smoothed, a circular junction with a gradually
changing refractive index is obtained. The semiclassical tra-
jectories agree qualitatively with the quantum current density
but an energetically forbidden region intensifies the interfer-
ence both outside and inside the junction; see Fig. 10. This
strong interference in smooth circular p-n junction leads, for
specific parameters, to interesting patterns such as whisper-
ing gallery modes; see Fig. 11. Finally, we demonstrated in
Fig. 13 that smooth circular n-n′ and p-p′ junctions act as
beam splitters and converging lenses, respectively. In Fig. 15,
we proved the feasibility of realizing Luneberg and Maxwell
lenses in graphene.

The semiclassical trajectories are an efficient tool to esti-
mate the current flow in nanoelectronic devices. They are valid
in the regime where the Fermi wavelength of the electrons
is much larger than the lattice constant but smaller than the
characteristic lengths appearing in the system (for example,
the width of the interface of a p-n junction) in order to resolve
them. These restrictions can be summarized as

lattice
constant 	 electron

wavelength 	 characteristic
length scales.

In contrast, the NEGF simulations are necessary when the
electron waves create strong interference patterns which can-
not be cast by the semiclassical methods.

We are confident that the presented broad variety of differ-
ent properties of smooth graphene p-n junctions will stimulate
gradient-index optics experiments in graphene. Our findings
contribute to the overall understanding of the local current
flow in graphene and may eventually lead to new nanoelec-
tronic devices.
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